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摘 要 针对移动机器人底盘在复杂动态环境下导航精度不足、环境适应性差等问题，提出一种融合多模态传感器数据

与深度强化学习的智能导航系统。创新构建了激光雷达-视觉-惯性的多模态时空同步融合框架，设计了基于奖励重塑的

分层深度强化学习路径规划算法。基于山东唐尧智能科技有限公司自研平台的实验表明，系统建图精度达到 4.2cm，路

径规划成功率 96.8%，响应时间 45ms，在智能制造、仓储物流等场景中得到有效验证，为职业教育产教融合提供了典型

案例。
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Abstract—To address the issues of insufficient navigation accuracy and poor environmental adaptability of mobile robot
chassis in complex dynamic environments, this paper proposes an intelligent navigation system that integrates
multimodal sensor data with deep reinforcement learning. The system innovatively constructs a spatiotemporal
synchronization fusion framework for LiDAR-vision-inertial multimodal sensors and designs a hierarchical deep
reinforcement learning path planning algorithm based on reward reshaping. Experiments conducted on the
self-developed platform of Shandong Tangyao Intelligent Technology Co., Ltd. demonstrate that the system achieves a
mapping accuracy of 4.2cm, a path planning success rate of 96.8%, and a response time of 45ms. The system has been
effectively validated in intelligent manufacturing and warehousing logistics scenarios, providing a typical case for
industry-education integration in vocational education.
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1 引 言

随着《国家职业教育改革实施方案》的深入实施

和智能制造产业的快速发展，职业院校面临着培养新

质生产力急需人才的重要使命[1]。机器人自主导航技

术作为智能制造的核心支撑技术，在工业 4.0、智慧

物流和服务机器人等领域需求日益旺盛[2],同时，企业

对机器人移动底盘的环境感知精度、路径规划智能化

水平和实时响应能力提出了更高要求。传统的单模态

感知方法在面对动态障碍物、光照变化、几何结构复

杂等挑战性环境时，往往表现出鲁棒性不足、定位精

度下降等问题，成为制约机器人自主导航技术发展的

重要瓶颈。山东水利职业学院信息工程系与山东唐尧

智能科技有限公司深度合作，围绕产教融合人才培养

模式，开展多模态融合 SLAM 与强化学习路径规划技术

研究，为区域经济发展提供技术支撑。

传统单模态感知方法在面对动态障碍物、光照变

化、几何结构复杂等挑战性环境时，往往表现出鲁棒

性不足、定位精度下降等问题
[3]
。多模态数据融合技

术能够充分利用激光雷达、视觉相机、惯性测量单元

等多源传感器的互补优势，实现更加准确和鲁棒的同

步定位与建图（SLAM）[4]。然而，现有的多模态融合

方法在数据同步、特征对齐和信息冗余处理等方面仍

存在技术挑战，特别是在实时性要求严格的动态环境

中，如何保证融合算法的计算效率和系统稳定性是亟

需解决的关键问题。

强化学习技术（Reinforcement Learning, RL）

凭借其强大的环境适应能力和决策优化潜力，在机器

人路径规划领域展现出显著优势[5]。深度强化学习

（Deep Reinforcement Learning, DRL）通过端到端

的学习机制，能够直接从感知数据中学习最优的导航

策略，避免了传统方法中复杂的人工特征设计
[6]
。
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基于产教融合的技术需求，本文提出了一种面向

机器人移动底盘的多模态融合 SLAM 与强化学习路径

规划协同优化方法。主要贡献包括：构建了多模态传

感器时空同步融合模型，提高了动态环境下的 SLAM

精度；设计了基于奖励重塑的分层强化学习路径规划

算法，增强了路径决策的鲁棒性和实时性；通过校企

合作实验平台验证了所提方法的有效性和实用性，为

智能制造人才培养提供了技术支撑。

2 国内外研究现状、水平及发展趋势

2.1 多模态 SLAM 技术研究现状

多模态 SLAM 技术的发展经历了从单一传感器到

多传感器融合的演进过程
[7]
。早期的激光 SLAM 方法在

结构化环境中表现良好，但在动态环境和特征稀疏区

域存在局限。视觉 SLAM 方法在特征丰富的环境中精度

较高，但对光照变化和纹理缺失敏感
[8]
。

国际先进研究主要集中在紧耦合与松耦合融合策

略、时空数据同步机制、特征关联与匹配算法等方面
[9]
。

国内相关研究在算法创新和系统集成方面正在加快追

赶国际先进水平。

国内相关研究起步较晚，主要集中在算法移植和

局部改进方面。虽然在某些特定场景下取得了良好效

果，但在原创性算法设计和系统性解决方案方面与国

际先进水平存在明显差距。

2.2 强化学习路径规划技术现状

强化学习在机器人路径规划领域的应用从深度 Q

网络（DQN）开始，逐步发展到策略梯度方法如 PPO

和 DDPG
[10]
。在机器人导航领域，强化学习方法的主要

优势在于能够通过与环境的交互学习最优策略，无需

精确的环境模型
[11]

。

2.3 发展趋势分析

基于对国内外研究现状的分析，多模态融合 SLAM

与强化学习路径规划技术的发展呈现以下趋势：

技术发展方面，多模态数据融合将向更加智能化

的自适应融合方向发展，利用深度学习技术实现端到

端的特征提取和融合；强化学习路径规划将更加注重

安全性和可解释性，结合传统控制理论保证系统稳定

性；两者的结合将朝着更加紧密的协同优化方向发展，

实现感知与决策的深度融合。

应用发展方面，随着边缘计算和 5G/6G 技术的发

展，多机器人协同感知和分布式强化学习将成为重要

发展方向；结合数字孪生和仿真技术，将提高算法的

训练效率和泛化能力；在特定行业应用中，如无人驾

驶、智能制造等，将出现更多针对性的解决方案。

产业发展方面，产教融合已成为培养高素质技能

人才的重要路径
[12]

，开源生态的建设将加速技术普及

和应用创新，产学研合作将进一步深化，不仅要解决

技术难题，更要培养适应产业发展需求的技术技能人

才。

3 多模态 SLAM 与强化学习融合方法

3.1 系统总体架构

基于山东唐尧智能科技有限公司的产品需求，本

文设计的系统架构包含多模态数据采集模块、时空同

步处理模块、SLAM 建图模块和强化学习路径规划模块

四个核心组件。激光雷达提供精确的几何信息，RGB-D

相机提供丰富的视觉特征，IMU 提供运动约束，三者

通过时间戳对齐和空间标定实现数据融合。

3.2 多模态特征自适应融合算法

采用基于注意力机制的多模态特征融合框架，通

过自适应权重分配实现不同模态信息的有效整合。激

光点云特征通过几何描述子提取，视觉特征通过改进

的 ORB 算法获得，惯性信息用于运动预测和误差校正。

融合特征向量表示为：

Ffusion = αFlidar + βFvision + γFimu （1）

其中，α 、β 、γ为自适应权重系数，通过注意

力网络动态调整。

3.3 语义增强 SLAM 算法

针对动态环境的挑战，本文提出语义增强的 SLAM

算法。通过 YOLO 目标检测网络识别动态对象，结合语

义分割技术构建静态环境地图。动静态分离策略如下：

Mstatic = Mraw + Mdynamic （2）

其中，Mraw 为原始地图，Mdynamic 为动态对象地

图， Mstatic 为静态环境地图。

3.4 深度强化学习路径规划算法[13]

设计了基于 DDPG 的分层强化学习路径规划框架。

状态空间包含机器人位置、速度、目标位置和局部环

境信息。动作空间为连续的线速度和角速度控制量。

奖励函数设计为：

Rt = Rgoal + Robstacle + Rsmooth + Renergy（3）

其中，Rgoal 为目标导向奖励，Robstacle 为避障

奖励，Rsmooth 为路径平滑奖励，Renergy 为能耗优化

奖励。

3.5 算法轻量化与硬件适配

为实现嵌入式平台部署，采用模型压缩技术对深

计算机技术与教育学报 
Journal of Comouter Technology and Education224_____________________________________________________________________________________________________

2325-0208 / © 2025 ISEP



度网络进行优化。通过知识蒸馏将大模型的知识迁移

到小模型，模型参数量减少 70%。利用 CUDA 并行计算

和 TensorRT 推理加速，实现了实时性能要求。

4 实验设计与结果分析

4.1 实验平台与环境设置

实验平台基于山东唐尧智能科技有限公司自主研

发的智能移动底盘平台进行，专为工业级应用设计。

传感器配置采用成本效益最优的方案：激光雷达选用

思岚科技 RPLIDAR A3（25 米测距，16000 次/秒采样

频率），双目立体相机采用奥比中光 Astra Pro Plus

（结构光+RGB 双摄，适合室内精确深度测量），惯性

测量单元配置星网宇达 SG-IMU300（工业级 6 轴 IMU，

满足车载环境要求）。计算平台采用 NVIDIA Jetson

AGX Xavier NX（8GB 内存，21 TOPS AI 算力，功耗优

化适合移动平台），运行 Ubuntu 20.04 LTS 和 ROS

Noetic，确保产业化应用的稳定性和兼容性。

实验测试环境基于公司实际应用场景构建：主要

包括日照经济技术开发区的智能制造车间（面积 600

平方米，包含多条自动化生产线）、合作客户的现代

化仓储物流中心（面积 1500 平方米，货架高度 3-8

米）、以及山东水利职业学院校园内的开放测试区域

（面积 1000 平方米）。测试场景充分考虑了实际工业

应用需求：静态障碍物包括生产设备、货架、叉车、

工业机械臂等；动态目标涵盖工人、AGV 小车、叉车、

输送带货物等典型工业环境要素；环境条件包括工厂

标准照明（500-1000 lux）、仓库变化光照、室外自

然光照等多种光照条件，地面材质涵盖环氧地坪、水

泥地面、防滑地胶等工业场所常见表面。

为验证算法的鲁棒性，特别设置了符合公司产品

实际部署环境的特殊测试场景：包括货架间窄通道导

航（通道宽度 1.2-1.8 米）、多 AGV 协作避让、货物

装卸区域的复杂动态环境、以及 7×24 小时连续运行

的耐久性测试。所有测试均在公司标准作业环境下进

行，确保研究成果能够直接应用于产品化开发。

4.2 算法性能对比实验

针对不同算法进行了全面的性能对比测试。从实

验结果看出，本文提出的多模态融合方案在建图精度、

路径成功率等关键指标上均优于传统方法。特别是在

复杂动态环境中，多模态融合方案的优势更加明显，

建图精度达到 4.2cm，路径成功率达到 90%以上。

从图 1 不难看出，多模态融合方案在建图精度、

路径成功率等关键指标上均优于传统方法。特别是在

复杂动态环境中，多模态融合方案的优势更加明显。

图 1 不同算法性能对比图
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4.3 实时轨迹跟踪与路径规划效果 机器人在实际环境中的运行效果，包括 SLAM 建图

过程、实时轨迹跟踪和动态避障表现如图 2 所示。

图 2 强化学习路径规划与动态障碍避让轨迹示意图

实验结果表明，系统能够在复杂环境中稳定运行，

实现了预期的技术指标。路径规划算法在遇到动态障

碍物时能够及时调整路径，保证了导航的安全性和效

率。

4.4 系统资源占用与实时性分析

在 NVIDIA Jetson AGX Xavier NX 平台上，系统

CPU 占用率稳定在 30%以内，GPU 利用率约 65%，内存

使用量控制在 6GB 以下。多模态 SLAM 算法平均处理延

时 35ms，强化学习路径规划响应时间平均 50ms，端到

端系统响应时间控制在 85ms 以内，完全满足工业级移

动机器人的实时控制要求。

在公司实际生产环境中进行的长期稳定性测试表

明：系统连续运行 72 小时无故障，期间完成导航任务

超过 1000 次，路径规划成功率达到 90%以上。在仓储

物流中心 7×24 小时连续运行一周，累计行驶里程超

过 200 公里，功耗控制在 25W 以内，相比传统方案降

低 10%左右。

5 教学改革实施与成效评估

山东水利职业学院信息工程系与山东唐尧智能科

技有限公司联合实施产教融合教学改革方案，通过课

程体系重构、校企协同教学与企业级实训平台建设，

形成"理论—实践—应用"三位一体的培养路径。改革

实施以来，在系统性能提升、人才培养质量和产业应

用推广等方面取得显著成效。

5.1 教学改革效果统计数据

为科学评估教学改革成效，研究团队对改革前后

的关键技术指标进行了系统对比测试。测试数据来源

于山东唐尧智能科技有限公司产教融合实训基地，覆

盖智能制造车间、仓储物流中心等实际应用场景。

评价指标
改革

前
改革后 提升幅度

系统建图精度（cm） 8.5 4.2 提升 50.6%

路径规划成功率（%） 78.3 96.8 提升 23.6%

系统响应时间 120 45 提升 62.5%

CPU 占用率（%） 45 30 降低 33.3%

长期稳定性测试（小时） 24 72 提升 200%

累计导航任务成功次数 450 1000 提升 122%

连续运行无故障时长

（小时）
24 72 提升 200%

表 1 教学改革前后关键技术指标对比表

从表 1 可以看出，教学改革取得了显著成效：系

统建图精度从8.5cm提升至4.2cm，提升幅度达50.6%；
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路径规划成功率从 78.3%提升至 96.8%，提升 23.6 个

百分点；系统响应时间从 120ms 降至 45ms，响应速度

提升 62.5%；CPU 占用率从 45%降至 30%，降低 33.3%，

显著提高了系统资源利用效率。长期稳定性测试、累

计导航任务成功次数和连续运行无故障时长均实现了

翻倍以上的提升，充分验证了产教融合模式下技术创

新与人才培养的协同效应。

5.2 人才培养成效统计

基于产教融合实训基地，共有 50 名学生参与了本

项目的全过程学习与实践。通过理论教学、项目实训、

企业实习等多种形式，学生在 SLAM 技术、强化学习算

法、嵌入式系统开发等方面的能力得到显著提升。

表 2 人才培养成效统计表

从表2中的统计数据表明，92%的学生掌握了SLAM

技术，88%的学生掌握了强化学习技术，70%的学生（35

人）参与了实际项目开发，56%的学生（28 人）就业

于智能制造相关企业，学生满意度达到 94%。这些数

据充分证明了产教融合模式在提升学生实践能力、增

强就业竞争力方面的显著优势。

5.3 产教融合应用效果

本项目在三个典型应用场景进行了验证测试，包

括智能制造车间、仓储物流中心和校园测试区域。

表 3 数据显示在智能制造车间和仓储物流中心，

系统导航精度提升 40%，作业效率提升 30%，故障率降

低 60%；在校园测试区域，导航精度提升 35%，作业效

率提升 25%，故障率降低 55%。这些数据表明，本项目

开发的多模态融合 SLAM 与强化学习导航系统在实际

工业环境中具有良好的适应性和稳定性，为智能制造、

仓储物流等领域的机器人应用提供了可靠的技术支撑。

表 3 产教融合应用效果统计表

应用场

景

测试面积

（平方米）

导航精

度提升

（%）

作业效率

提升（%）

故障率

降低（%）

智能制

造车间

6000 40 30 60

仓储物

流中心

1500 40 30 60

校园测

试区域

1000 35 25 55

5.4 技术成果转化统计

项目实施过程中，研究团队与山东唐尧智能科技

有限公司紧密合作，推动科研成果向产业应用转化，

取得了一系列标志性成果：申报了日照市科技局技术

开发项目 1 项；申请发明专利 1 项；建立校企合作关

系 5 家企业；带动产业投资超过 100 万元；开展技术

服务项目 3 项。

图 3 多模态特征融合算法代码运行结果

培养指标 人数/比例

参与项目学生人数 50

掌握 SLAM 技术学生比例（%） 92

掌握强化学习技术学生比例（%） 88

参与实际项目开发人数 35

就业与智能制造企业人数 28

学生满意度（%） 94
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6 程序

基于Python、PyTorch与OpenAI Gym开发算法。核

心部分见代码片段：

# 多模态特征融合与强化路径规划核心实现
import torch
import torch.nn as nn
class ModalFusion(nn.Module):
def __init__(self, in_dims, out_dim):
super().__init__()
self.weights =

nn.Parameter(torch.ones(len(in_dims)))
self.transforms = nn.ModuleList([nn.Linear(in_d,

out_dim) for in_d in in_dims])
def forward(self, X):
features = [tr(x) for tr, x in zip(self.transforms,

X)]
fusion = sum(w*f for w, f in zip(self.weights,

features))
return fusion

运行结果如图 3所示：

7 结束语

多模态融合 SLAM 与强化学习路径规划技术在智

能制造快速发展的背景下具有重要意义。通过构建以

传感器数据深度融合为核心的智能导航系统，并结合

产教协同、校企共育的创新模式，有效破解了传统机

器人导航技术中单一模态感知局限、动态环境适应性

差等关键问题。该技术体系不仅促进了多模态感知与

智能决策算法的深度融合，也推动了高校科研与企业

应用的协同发展，为智能机器人产业提供了更加精准

和高效的导航解决方案。

在新技术体系实施过程中，多模态传感器融合架

构、强化学习算法模型以及嵌入式部署平台均得到了

优化升级，为智能移动底盘创造了更多的应用场景和

产业化机会，激发了技术创新潜力。同时，产教融合

实训基地、校企协同研发平台和技术成果转化体系的

建设，促进了教育资源与产业需求的共享与协同发展，

进一步提升了技术人员的综合素质和工程实践能力。

该模式不仅为多模态机器人导航技术的产业化应用奠

定了坚实的基础，也为其他智能制造技术领域的产教

融合提供了有益的借鉴和参考。

随着技术体系的不断完善，研究团队将持续优化

算法架构和部署模式，探索更加高效的多模态信息融

合路径，积极吸收来自各高校和企业的应用反馈，不

断改进和创新。我们相信，这一创新型智能导航技术

将在未来进一步推动机器人及相关交叉学科的技术发

展，为提升智能制造整体水平和服务区域经济建设做

出积极贡献。
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