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Application of Multimodal Fusion SLAM and Reinforcement
Learning in Robot Chassis
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Abstract—To address the issues of insufficient navigation accuracy and poor environmental adaptability of mobile robot
chassis in complex dynamic environments, this paper proposes an intelligent navigation system that integrates
multimodal sensor data with deep reinforcement learning. The system innovatively constructs a spatiotemporal
synchronization fusion framework for LiDAR-vision-inertial multimodal sensors and designs a hierarchical deep
reinforcement learning path planning algorithm based on reward reshaping. Experiments conducted on the
self-developed platform of Shandong Tangyao Intelligent Technology Co., Ltd. demonstrate that the system achieves a
mapping accuracy of 4.2cm, a path planning success rate of 96.8%, and a response time of 45ms. The system has been
effectively validated in intelligent manufacturing and warehousing logistics scenarios, providing a typical case for
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industry-education integration in vocational education.
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import torch
import torch.nn as nn
class ModalFusion (nn. Module) :
def init (self, in dims, out dim):
super (). init ()
self. weights =
nn. Parameter (torch. ones (len (in dims)))
self. transforms = nn.ModuleList([nn.Linear(in d,
out dim) for in d in in dims])
def forward(self, X):
)] features = [tr (x) for tr, x in zip(self. transforms,
X
fusion = sum(w¥f for w, f in zip(self.weights,
features))
return fusion
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